If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-18x+83=3
We move all terms to the left:
x^2-18x+83-(3)=0
We add all the numbers together, and all the variables
x^2-18x+80=0
a = 1; b = -18; c = +80;
Δ = b2-4ac
Δ = -182-4·1·80
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2}{2*1}=\frac{16}{2} =8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2}{2*1}=\frac{20}{2} =10 $
| 3g-10=4g | | 6r-8=20 | | -5x+5=3x-67 | | 63=−3(1−2n) | | 1+2q=3q+10 | | 24=90/h² | | 2a+3.5=7.5 | | 2(x+4)=12 | | −29=5(2a−1)+2a | | a=1/2(3.14)(12) | | 1.2=c/7 | | 4+9s=8s-6 | | 4(x+10)-2x+6=68 | | 7+5x=-4x+97 | | 32.50t+5=38.75t+20 | | 4.5n=2.25 | | 9q=10q-9 | | -11z=33 | | /2(x+4)=12 | | p-4=87 | | 9x=25=5=x | | -5c-2=-4c-10 | | (x+4)+(x+18)=142 | | 7+4y=9y+22 | | 3(x=5)+x=7 | | 2(3n+1)=28 | | 24=90÷h² | | 10.5x=10 | | 7x+7+5x=-101 | | 3z-7=-14 | | 9+2b=b | | 2(2x)+5=17 |